SEXUAL REPRODUCTION IN FLOWERING PLANTS

FLOWER

- ✓ Reproductive unit of the flowering plants.
- ✓ Atypical bisexual flower consists of 4 different whorls calyx, corolla, androecium and gynoecium.
- ✓ Calyx outermost whorl consists of sepals.
- \checkmark Corolla composed of petals that are usually brightly colored.
- ✓ Androecium represents the male reproductive organ.
 - Composed of stamens.
 - Each stamen is made up of Anther and a stalk / filament.
- ✓ Gynoecium represents the female reproductive organ
 - Composed of carpels.
 - Carpels have 3 parts- stigma, style and ovary.
 - Ovary is the basal enlarged portion.
 - Style is the tubular structure that connects the stigma to the ovary.
 - Stigma is the tip of the style that typically acts as the receptive surface for the pollen grains.
 - Monocarpellary: gynoecium consisting of a single pistil.
 - Multicarpellary: gynoecium consisting of more than one pistil.
 - Syncarpous: When carpels are fused.
 - Apocarpous: When carpels are free

PRE-FERTILIZATION: STRUCTURE AND EVENTS

> STAMENS, MICROSPORANGIUM AND POLLEN GRAINS

- ✓ **Structure of stamen** Consists of 2 parts:
 - o Filament- Long, slender stalk
 - Anther- Terminal, bilobed structure
- \checkmark Proximal end of filament is attached to the base of flower (thalamus).
- ✓ **Structure of Anther** Bilobed (2 parts of anther) and dithecous (Each lobe has 2 theca)
 - A longitudinal groove separates the two theca.
 - Due to the bilobed & dithecous nature the anther is tetragonal (four sided) structure.
 - $\circ~$ Each of the corner consists of one microsporangia, i.e. 2 microsporangia are present in each of the theca.
 - Microsporangia develops into pollen sacs that contains the pollen grains.

Structure of Microsporangia:

- ✓ In young anther, each of the microsporangium is consisting of sporogenous tissue surrounded by a total of 4 layers.
- ✓ The outer 3 layers (epidermis, endothecium & middle layer) perform the function of protection.
- \checkmark The innermost layer (Tapetum) helps in nourishing the developing pollen grains.
- ✓ <u>Nature of the cells of Tapetum</u>

- o Dense cytoplasm
- Possess more than one nucleus.

Microsporogenesis

- ✓ Each of the cell of the sporogenous tissue acts as the pollen mother cell (PMC) or microspore mother cell.
- ✓ The process of formation of microspore from PMC is called microsporogenesis.
- ✓ The PMC undergoes meiotic cell division to form microspore tetrads (haploid cells arranged in cluster of 4 cells).
- ✓ The microspores dissociate from each other and give rise to the pollen grain as the anther matures and dehydrates.

Male Gametophyte (Pollen Grains)

- \checkmark It represents the male gametophyte.
- ✓ They have 2 layered wall.
 - \circ Exine outer layer, made up of sporopollenin.
 - Sporopollenin is resistant to high temperatures and strong acids and alkali.
 - They are also resistant to degradation by enzymes.
 - Due to this the pollen grains are well preserved as fossils.
 - Germ pore: Prominent aperture in the exine where the sporopollenin is absent.
 - Germ pore is essential for the pollen germination.
 - Intine inner thin layer, made up of cellulose and pectin.
- \checkmark Cytoplasm of the pollen grain is surrounded by plasma membrane.
- ✓ Matured pollen grains have 2 cells
 - Vegetative cell -
 - Bigger cell
 - Abundant food reserve
 - Large irregular shaped nucleus
 - Generative cell
 - Smaller cell
 - Floats in the cytoplasm of the vegetative cell
 - Dense cytoplasm
- ✓ In 60% angiosperms the pollen grains are released in 2 celled stage, while in the remaining 40% it is released in a 3 celled condition (generative cell divides mitotically to give rise to the two male gametes).
- ✓ Pollen grains can cause allergies and bronchial afflictions (infections), leading to asthma, bronchitis, etc. E.g. *Parthenium* or carrot grass
- ✓ Pollen products: pollen grains are rich in nutrients
 - Available in the form of tablets & syrups.
 - It can increase the performance of athletes & race horses
- ✓ Pollen Viability:
 - o 30 Minutes: Cereals like Rice & Wheat.
 - Months: Members of Solanaceae, Rosaceae, Leguminoseae.
 - Years: Artificial means- Liquid Nitrogen (-196°C)

> THE PISTIL, MEGASPORANGIUM (OVULE) AND EMBRYO SAC

- $\checkmark~$ Each pistil consists of the stigma, style and ovary.
- $\checkmark~$ The ovary contains the ovarian cavity (locule).
- \checkmark The megasporangia (ovules) are located inside the ovarian cavity connected by placenta.
- ✓ The number of ovules depends on the plant species:
 - One: wheat, paddy, mango
 - o Many: Papaya, water-melon, orchids

Structure of Megasporangium (Ovule)

- $\checkmark~$ Ovule connects with the placenta via a stalk called funicle.
- $\checkmark~$ Hilum is the junction funicle and ovule.
- \checkmark The protective layers of the ovule are called the Integuments (1 or 2 layers).
- $\checkmark~$ Inner to the integuments are the nucellus.
- ✓ Integuments are present all around the nucellus except at a small opening called the micropyle.
- \checkmark Chalaza end represents the basal part of the ovule, and is opposite to the micropylar end.
- ✓ The female gametophyte (embryo sac) is located inside the nucellus.
- $\checkmark~$ Generally, the ovules have a single embryo sac.
- $\checkmark~$ The embryo sac develops into the megaspore.
- $\checkmark~$ Nucellar cells are rich in reserve food materials.
- $\checkmark~$ The nucellus provides nutrition to the developing embryo sac.

Megasporogenesis

- ✓ The process of formation of the megaspore from the megaspore mother cell is called megasporogenesis.
- ✓ A single megaspore mother cell (MMC) is formed in the micropylar region of the nucellus of the megasporangium (ovule).
- $\checkmark~$ The MMC undergoes meiotic cell division resulting in 4 megaspores.

Female Gametophyte (Embryo sac)

- ✓ The development of the embryo sac in majority of the flowering plants follows the monosporic development process.
- ✓ Out of the 4 megaspores only one remains functional while the remaining three degenerates.
- \checkmark Only the functional megaspore develops into female gametophyte.
- $\checkmark~$ The functional megaspore undergoes free nuclear cell division.
- ✓ Three mitotic nuclear division of the functional megaspore nucleus gives rise to a 8 nucleate stage of embryo sac.
- ✓ After this stage the six of the eight nuclei are surrounded by cell walls and are organized into six different cells.
 - 3 of these cells move towards the chalazal end are called the antipodals.
 - $\circ~$ The remaining 3 cells move to the micropylar end and form the egg apparatus.
 - Egg apparatus consists of the egg cell and two synergids.
 - The synergids have special cellular thickenings called the filiform apparatus.
- \checkmark The remaining two nuclei (polar nuclei) are placed in the large central cell.

✓ As a result of this organization, a typical angiospermic embryo sac, at maturity is 7celled but 8-nucleate.

> **<u>POLLINATION</u>**

- ✓ In case of plants both gametes are non-motile.
- ✓ The transfer of pollen grains to the stigma of the pistil of the same flower or another flower is called pollination.
- \checkmark This process occurs with the help of external agents pollinating agents.

> <u>Pollination Types: Based on the source of pollination.</u>

- ✓ *Autogamy* : (Self-pollination)
 - Involvement of a single flower.
 - Pollen grains is transferred from the anther to the stigma of the same flower.
 - $\circ~$ Complete autogamy is rare in a flower remains open with exposed anther and stigma.
 - Criteria for the autogamy.
 - Synchrony in pollen release and stigma receptivity.
 - Close proximity of the anther and stigma.
 - Plants with 2 types of flower Viola (common pansy), Oxalis, and Commelina
 - Chasmogamous Flower: (Regular flower with exposed anther & stigma)
 - Cleistogamous Flower: (Flowers do not open at all)
 - Anther and stigma lie close to each other.
 - Pollen falls directly on the stigma upon pollen dispersal.
 - No need of the pollinating agents
 - No chance of cross pollination.
 - Advantage of Cleistogamous flower:
 - Production of assured seed-set even in the absence of pollinators.
 - Disadvantage of Cleistogamous flower:
 - Due to self-pollination variation may not be created.
 - Prevent the evolution of genetically superior variety.
- ✓ **Geitonogamy** : (Cross pollination involving one plant)
 - $\circ~$ Pollen grains is transferred from the anther of one flower to the stigma of another flower but from the same plant.
 - It is functionally cross pollination.
 - Genetically it is similar to the autogamy as pollen grain is from one plant.
- ✓ **<u>Xenogamy</u>** : (Cross pollination involving different plant)
 - Pollen grain is transferred from anther of one flower to the stigma of another flower of a different flower.
 - Unites genetically different types of pollen grains.

Agents of Pollination

- ✓ Biotic pollinating agents living organisms: [used by majority of plants]
- ✓ Abiotic pollinating agents Wind and Water

- ✓ Why do plants produce a large amount pollen grains compared to the numbers of ovules available for pollination??
 - Ans- As the event of pollen grain coming in contact with the stigma is a chance factor, to compensate this uncertainty and the probable loss of pollen large amount of pollen grain is released.

Pollination by wind - Anemophily

- ✓ Common in grasses.
- ✓ Nature of Flower:
 - Pollen grains are light weight.
 - The pollens are non-sticky.
 - \circ Well exposed stamen.
 - Large feathery stigma.
 - Inflorescence consists of numerous flowers.
 - Example- corn cob

Pollination by Water – Hydrophily

- ✓ Rare limited only to 30 plant genera (mostly monocotyledons)
- ✓ Example- Vallisneria and Hydrilla (Fresh water), Zostera (marine sea-grass)
- ✓ Pollination in Vallisneria :
 - \circ $\,$ Female flower reaches the top of the water surface
 - Male flower/pollen grains released on the water surface
 - \circ $\,$ The pollen grains reach the stigma via passive water current.
- ✓ Pollination in Seagrasses :
 - The female flower remains submerged in the water.
 - Pollen grains (long & ribbon shaped) are released inside the water.
 - Pollen grains reach the stigma via passive water current and achieve pollination.
- ✓ Property of pollen grain in water pollinated plant species
 - Presence of protective mucilaginous covering that prevents them from wetting.
- ✓ Aquatic plants like water hyacinth and water lily follow pollination by insects or wind, as the flower reach the water surface.

Pollination by Biotic organisms

- ✓ Pollinating agents includes- Bees, butterflies, flies, beetles, wasps, ants, moths, birds (sunbirds and humming birds) and bats.
- ✓ Among the animals, insects, particularly bees are the dominant biotic pollinating agents.
- ✓ Other organisms primates (lemurs), arboreal (tree-dwelling) rodents, or even reptiles (gecko lizard and garden lizard).
- ✓ Nature of flower :
 - Large flowers
 - o Colorful
 - Fragrant and rich in nectar
 - Pollen grains are sticky
 - \circ $\,$ In case of small flower- many are clustered into an inflorescence.
- ✓ Animals are attracted towards flower due to the foul odours.
- ✓ Floral rewards are provided to sustain the animal visit.

- Pollen and nectar are floral rewards
- ✓ When the pollinator visits the flower to harvest the floral reward the bod of the pollinator gets a coating of the pollen.
- \checkmark When these animals come in contact with stigma it brings about the pollination.
- ✓ Floral rewards as a safe place to lay egg
 - E.g.-Amorphophallus tallest flower
 - E.g.- Yucca plant and a moth species.
 - They can't complete their life cycle without each other
 - Moth deposits the egg in the locule of ovary
 - The flower in turn gets pollinated by the moth
 - The moth larva comes out of the eggs as the seeds stat developing.

> <u>Outbreeding Devices:</u>

- ✓ Continued self-pollination result in inbreeding depression.
- ✓ As majority of the flowers are bisexual, there is a need for the plants to develop methods by which it can prevents self-pollination and promote cross pollination.
- $\checkmark~$ The outbreeding devices enables them to achieve it.
 - Pollen release and stigma receptivity are not synchronized,
 - Different position of the stigma and the anther so that the pollen grains do not come in contact with the stigma
 - Self-incompatibility: genetic mechanism that prevents the self-pollen from pollen germination or pollen tube growth.
 - Production of unisexual flowers.
- ✓ In case of monecious plants (maize, castor) where both the male and female flowers are present on the same plant it prevents autogamy but not geitonogamy.
- ✓ In case of dioecious plants (papaya) where both the male and female flowers are on different plants it prevents both autogamy and geitonogamy.

Pollen-pistil interaction

- ✓ All the events-from pollen deposition on the stigma until pollen tubes enter the ovule-are together referred to as pollen-pistil interaction.
- ✓ Pollination might lead to the deposition of pollen grains of various plant species.
- ✓ The process of pollination does not guarantee fertilization.
- ✓ Only if the right type of pollen (compatible pollen grain of the same species) is landing on the stigma, it might lead to fertilization.
- ✓ If the pollen grain is the right type (compatible) then the post-pollination events continues leading to fertilization.
- $\checkmark~$ If the pollen grain is wrong type (incompatible) the pistil rejects it.
- \checkmark An incompatible pollen is rejected by:
 - Prevention of pollen germination
 - Prevention of pollen tube growth
- ✓ The decision of compatible and non-compatible pollen is due to the continuous chemical talk between the pollen grain and the pistil.
- ✓ Pollen germination:
 - Compatible pollen grain germinates to form pollen tube through germ pore.

- \circ $\;$ The content of the pollen grain moves into the pollen tube.
- $\checkmark~$ Pollen tube travels through the style and reaches the ovary.
- $\checkmark\,$ It enters the ovule through the micropyle and then enters one of the synergids through the filiform apparatus.
- \checkmark The filiform apparatus guides the entry of the pollen tube.

Artificial Hybridization:

- ✓ These refer to the crossing experiments in plants where only the desired pollen grains are used for pollination and the stigma is protected from contamination of unwanted pollen grains.
- $\checkmark~$ It is one of the major approaches in the crop improvement program.
- ✓ Steps:
 - Emasculation: Removal of anthers (in case of bisexual flower) before the dehiscence of anther.
 - In case of unisexual flower this step is not necessary.
 - Bagging: Covering of the emasculated flower with a bag (butter paper) of suitable size to prevent contamination of stigma by unwanted pollens.
 - Controlled pollination: When the stigma matures, the matured pollens from a desired male parent is dusted on it and the flower is rebagged and further development is allowed.

DOUBLE FERTILIZATION

- $\checkmark~$ The pollen tube releases two male gametes to the cytoplasm of the synergids.
- ✓ One male gamete fuse with the nucleus of the egg forming a diploid cell called zygote.
 - This fertilization event is called syngamy.
- ✓ The remaining male gamete fuse with the two polar nuclei of the central cell and produces primary endosperm nucleus (PEN) that is triploid in nature.
 - This fertilization event is called triple fusion as it involves the fusion of 3 haploid nuclei.
- ✓ As there are two fertilization events taking place at the same time in the embryo sac, this phenomenon is called double fertilization.
 - This event is unique to the angiospermic plants.
- ✓ Fate of double fertilization:
 - The central cell after triple fusion becomes Primary endosperm cell and develops into Endosperm.
 - The zygote divides and develops into the embryo.

POST FERTILIZATION: STRUCTURE AND EVENTS

- \checkmark This phase involves the following:
 - Endosperm development
 - Embryo development
 - Maturation of ovules into seeds
 - Maturation of ovary into fruits

> <u>ENDOSPERM</u>

- ✓ Development of the endosperm starts prior to the embryo development.
 - \circ The PEN divides and forms the endosperm tissue.
 - The cells are filled with reserve food materials.
 - They provide nutrition to the developing embryo.
- ✓ Endosperm development:
 - PEN undergoes repeated division to give rise to the free nuclei (free nuclear endosperm)
 - The free nuclear endosperm forms the cellular endosperm when they undergo cellularization.
- \checkmark Example Coconut
 - Free nuclear endosperm: tender coconut water
 - Cellular endosperm: white kernel (edible part)

> <u>EMBRYO</u>

- \checkmark The embryo develops from the zygote in the micropylar region of the embryo sac.
- ✓ Stages of embryogeny (embryo development):
 - o Proembryo
 - Globular stage
 - o Heart-shaped stage
 - \circ Mature embryo
- ✓ Component of dicot embryo:
 - o an embryonal axis and two cotyledons
 - \circ $\;$ Epicotyl: portion of embryonal axis above the level of cotyledons.
 - Terminates with Plumule (future shoot)
 - Hypocotyl: Cylindrical portion below the level of cotyledons.
 - Terminates with radicle (future root)
 - The root tip (radicle) is covered with root cap.
- ✓ Monocot Embryo:
 - Consists of only one cotyledon
 - Scutellum: Cotyledons of grass family
 - Coleorrhiza: Sheath of the radical and root cap
 - Coleoptile: Hollow foliar structure that encloses the shoot apex and few leaf primordia.

> <u>seed</u>

- \checkmark Developed from the fertilised ovule.
- \checkmark Components of seed:
 - seed coat(s)
 - cotyledon(s)
 - \circ an embryo axis.
- ✓ Non-albuminous seeds:
 - \circ Matured seeds with no residual endosperm
 - o E.g.- Pea, Groundnut

- ✓ Albuminous seeds:
 - Matured seeds with residual endosperm
 - E.g.- wheat, maize, barley, castor
- $\checkmark~$ Perisperm: The residual, persistent nucellus in seeds.
 - E.g.- black pepper, beet
- ✓ Seed Development:
 - Seed coat develops as the integuments hardens.
 - Micropyle remains as a small pore in the seed coat.
 - Essential to facilitates the entry of oxygen and water for seed germination.
 - When the seed matures, it becomes dry & the metabolic rate of the embryo slows down.
 - $\circ~$ At this stage the embryo enters the dormancy stage.

> <u>Fruit</u>

- $\checkmark~$ It is developed from the ovary.
- $\checkmark~$ The ovarian walls develop into the fruit wall.
- ✓ Types of fruit
 - Fleshy fruit : guava, orange, mango, etc.,
 - Dry fruit : groundnut, and mustard, etc.
 - \circ $\;$ True fruit: when fruit is developed from ovary
 - E.g.- Mango, Pea, etc.,
 - \circ $\;$ False fruit: fruit developed from parts other than ovary like thalamus
 - E.g.- apple, strawberry, cashew, etc.,

Parthenocarpy

- $\checkmark~$ Development of fruit without fertilization.
- $\checkmark~$ The fruit developed by this process is called parthenocarpic fruit.
- \checkmark They are generally seedless.
- ✓ E.g.- pineapple, banana, cucumber, grape, orange, etc.
- \checkmark Can be induced with the help of hormones.

Advantage of seeds:

- ✓ Pollination and fertilization are independent of water, seed formation is more dependable.
- \checkmark seeds have better adaptive strategies for dispersal to new habitats.
- \checkmark They can nourish the young seedlings as they are rich in reserve food materials.
- $\checkmark~$ The Hard seed coat provides protection to the embryo.
- ✓ Produce new genetic combinations leading to variations, as they are the product of sexual mode of reproduction.

Seed Viability:

- $\checkmark~$ Ability of seed to remain alive after their dispersal.
- $\checkmark~$ It can be few months to several years.
- ✓ Oldest recorded Viable Seed: Lupine(*Lupinus arcticus*) excavated from Arctic Tundra.
 - 10000 years of dormancy.
- ✓ Date Palm (*Phoenix dactylifer*) : 2000 years old viable seed

APOMIXIS & POLYEMBRYONY

- Apomixis
- \checkmark It is a form of asexual reproduction that mimics sexual reproduction.
- ✓ Process of production of seeds without fertilization.
- ✓ Example- Some species of Asteraceae and grasses.
- Method-1: \checkmark
 - Diploid egg cell is produced without reduction division and it develops onto embryo without fertilization.
- \checkmark Method-2:
 - Nucellar cells surrounding the embryo sac starts dividing, protrudes into the embryo sac and develops into embryo. (Citrus, Mango)
 - Such cases each ovule have more than one embryo POLYEMBRYONY

Hybrid Seeds and Apomixis

- ✓ Cultivation of hybrids has tremendously increased productivity
- ✓ Problems with Hybrid Seeds:
 - Hybrids seeds has to be produced every year.
 - o Seeds obtained from hybrid plants when grown, tend to segregate and loose the hybrid traits.
 - Cost factor
- ✓ Solution to this problem
 - Apomictic Hybrid Seeds
 - As there is no fertilization, there will be no segregation in the hybrid progeny.
 - The farmer can use the apomictic hybrid seeds for many years to raise the crop and need not buy the seed every year.
- ✓ Because of its importance there is active research going on to understand the genetics of apomixis and to transfer apomictic genes into hybrid varieties.