
Chapter 8- Function Overloading and Member Function IInd COMMERCE (B)

1 | P a g e

Chapter-8

FUNCTION OVERLOADING AND MEMBER FUNCTION

 Introduction:

 User defined function is a function defined by the user to solve his/her problem. Such a function

can be called from anywhere and any number of times in the program.

 C++ implements polymorphism through function overloading and operator overloading.

 Function overloading allows the user to create new abstract data type.

 Function Overloading:

 Function Overloading means two or more functions have same name, but differ in the number of

arguments or data types of arguments.

 Function overloading is the process of defining same function name to carry out similar types of

activities with various data items.

 Definition and Declaration of overloaded functions:

 The main factor in function overloading is a functions argument list.

 If there are two functions having same name and different types of arguments or different number

of arguments, then function overloading is invoked automatically by the compiler.

 Function Overloading is also known as Compile time polymorphism.

 Example:

int sum (int a, int b)

float sum (float p, float q)

 The function sum() that takes two integer arguments is different from the function sum() that

takes two float arguments. This is function overloading.

 To overload a function, each overloaded function must be declared and defined separately.

 Example:

int product (int p, int q, int r);

float product (float x, float y);

int product (int p, int q, int r)

{
cout<<”Product = “<<p * q * r << endl;

}

float product (float x, float y, float z);

{

cout<< “Product = “ << x * y <<endl;

}

Important

5 Marks

Chapter 8- Function Overloading and Member Function IInd COMMERCE (B)

2 | P a g e

 Calling Overloaded Functions:

 The following program shows how overloaded functions can be called.

Program: To compute area of rectangle, circle, triangle using overloaded functions.

#include<iostream.h>

#include<conio.h>

class funoverloaded

{

public:

int area (int l, int b) // area of rectangle

{

return (l * b);

}

float area (float r) // area of circle

{

return (3.14 * r * r);

}

float area (float b, float h)

{

return (0.5 * b * a); // area of triangle

}

};

void main()

{

funoverloaded f;

clrscr();

cout<<” Area of Rectangle:”<<f.area(4,6)<<endl;

cout<<”Area of Circle:”<<f.area(10)<<end;

cout<<”Area of Triangle:”<<f.area(3.0, 7.0)<<endl;

getch();

}

 Need for function overloading:

 The advantage of function overloading are:

o Code is executed faster.

o It is easier to understand the flow of information and debug.

o Code Maintenance is easy.

o Easier interface between programs and real world objects.

 Restrictions on Overloaded Functions:

 Each function in a set of overloaded functions must have different argument list.

 If typedef is used for naming functions, then the function is not considered as different type.

OUTPUT:

Area of Rectangle: 24

Area of Circle: 314.2857

Area of Triangle: 10.5

Chapter 8- Function Overloading and Member Function IInd COMMERCE (B)

3 | P a g e

 Inline Function:

 An Inline function is a special type of function whose body is inserted at the place where it is

called, instead of transferring the control to the function.

 The keyword inline is used to define inline function.

 Rules:

o Inline function definition starts with keyword inline.

o The inline function should be defined before all function that call it.

Important

5 Marks

o The compiler replaces the function call statement with the function code itself (expansion)

and then compiles the entire code.

 The general format for the inline function declaration is given below:

inline Returntype Fun_Name ([Argument])

{

……….. ;

return expression ;

}

 Program to find the cube of a number using inline function:

#include<iostream.h>

#include<conio.h>

inline int cube (int a)

{

return a * a * a;

}

void main()

{

int n ;

clrscr();

cout<<”Enter the input number”<<endl;

cin>>n;

cout<<”Cube of “ <<n<<” = “<<cunbe(n);

getch();

}

 Advantage of inline function:

 The size of the object code is considerably reduced.

 The speed of execution of a program increases.

 Very efficient code can be generated.

 There is no burden on the system for function calling.

 It also saves the overhead of return call from a function.

 The readability of the program increases.

OUTPUT:

Enter the input number

4

Cube of 4 = 64

4 | P a g e

Chapter 8- Function Overloading and Member Function IInd COMMERCE (B)

 Disadvantage of inline function:

 May increase the size of the executable file

 More memory is needed.

 If used in header file, it will make your header file size large and may also make it unreadable.

 Note: The inline function may not work some times for one of the following reasons:

 The inline function definition is too long or too complicated.

 The inline function is recursive.

 The inline function has looping constructs.

 The inline function has a switch or goto.

 Friend Function:

 A friend function is a non-member function of a class has the access permission to the private

member of the class.

 The friend function is declared within a class with the prefix friend.

 But it should be defined outside the class like a normal function without the prefix friend.

 The general format for the friend function is given below:

class class_name

{

public:

}

friend return_type function_name ([arguments]);

 The friend functions have the following properties:

 Friend function is not a member function of the class, has full access permission to private and

protected members of the class.

 It can be declared either in public or private part of a class.

 A friend function cannot be called using the object of that class. It can be invoked like any normal

function.

 The function is declared with keyword friend. But while defining friend function it does not use

either keyword friend or : : operator.

 They are normal external functions that are given special access privileges.

 It cannot access the data member variables directly and has to use an object name.membername.

 Use of friend function is rare, since it violates the rule of encapsulation and data hiding.

Important

5 Marks

5 | P a g e

Chapter 8- Function Overloading and Member Function IInd COMMERCE (B)

 Program to check a number is even or odd using a friend function.

#include<iostream.h>

#include<conio.h>

class number

{

private:

int a;

public:
void readdata()

{

cout<<”Enter the Number”<<endl;

cin>>a;

}

friend int even(number);

};

int even(number n)

{

if(n.a % 2 = = 0) //friend function can access the private data a of the object n

else

}

return 1;

return 0;

void main()

{

number num1;

clrscr();

num1.readadata();

if(even(num1)) //friend function call

cout<<”Number is Even”;

else

cout<<’Number is Odd”;

getch();

}

OUTPUT:

Enter the Number

10

Number is Even

Enter the Number

11

Number is Odd

6 | P a g e

Chapter 8- Function Overloading and Member Function IInd COMMERCE (B)

CHAPTER 8 – Function Overloading and Member Function BLUE PRINT

VSA (1 marks) SA (2 marks) LA (3 Marks) Essay (5 Marks) Total

- - - 01 Question 01 Question

- - Question No 32 05 Marks

Important Questions

5 Marks Question:

1. What is function overloading? Explain the need for function overloading.

2. Discuss overloaded functions with syntax and example.

3. What is inline function? Write a simple program for it.

4. Mention the advantage and disadvantage of inline function.

5. Explain friend function and their characteristics.

6. Program to check whether a number is prime or not using inline function:

#include<iostream.h>

#include<conio.h>

inline int prime (int n)

{

for(int i=2; i<n/2; i++)

if (n % i = = 0)

return 0;

return 1;

}

void main()

{

int num ;

clrscr();

cout<<”Enter the input number”<<endl;

cin>>num;

if (prime(num)) //inline function call

cout<<”Number is Prime “ ;

else

cout<<”Number is not a Prime “ ;

getch();

}

OUTPUT:

Enter the input number

5

Number is Prime

